terça-feira, 10 de novembro de 2009

Como é medida a aerodinâmica de um carro e dipositivos aerodinâmicos

O túnel de vento nas medições de arrasto

Para medir a eficiência aerodinâmica de um carro, em tempo real, os engenheiros da indústria automobilística tomaram emprestada uma ferramenta da indústria aeronáutica – o túnel de vento.

Basicamente, um túnel de vento é um enorme tubo com ventiladores que dirigem um fluxo de ar a um objeto em seu interior. Pode ser um carro, um avião ou qualquer outra coisa cuja resistência ao ar os engenheiros precisem medir. Numa sala anexa ao túnel os engenheiro estudam como o ar interage com o objeto – a maneira como as correntes de ar fluem sobre as variadas superfícies.

Aerodinâmica
©iStockphoto.com/Kiyoshi Takahase Segundo
Carros (e aviões) usam túneis de vento para testarem a aerodinâmica

O carro ou avião dentro do túnel nunca se move, mas os ventiladores criam vento a diferentes velocidades, para simular as condições do mundo real. Algumas vezes não é usado um carro de verdade – os projetistas se baseiam em modelos em escala de seus veículos na medição da resistência do ar. Conforme o vento se desloca sobre o carro no túnel, computadores calculam o coeficiente de arrasto (Cx).

Os túneis de vento não são nenhuma novidade. Eles começaram a ser usados no final do século 19 para medir o fluxo de ar em muitas experiências com os primeiros aviões. Até os irmãos Wright (em inglês) tinham um. Depois da Segunda Guerra Mundial, engenheiros ligados a competições automobilísticas começaram a usar túneis de vento, em busca de uma vantagem em relação aos concorrentes, medindo a eficiência dos dispositivos aerodinâmicos de seus carros. Mais tarde essa tecnologia passou a ser empregada em carros de passageiros e de carga.

Só que de alguns anos para cá os gigantescos túneis de vento de milhões de dólares têm sido cada vez menos usados. Simulações em computadores começam a substituir os túneis de vento para avaliar a aerodinâmica de carros e aviões. Em muitos casos, os túneis de vento quase servem apenas para checar se são precisas as simulações no computador.

Dispositivos aerodinâmicos

A aerodinâmica envolve mais do que apenas o arrasto – há outros fatores, chamados sustentação e downforce (sustentação negativa). Sustentação é a força que se opõe ao peso de um objeto, elevando-o e mantendo-o no ar. A sustentação negativa é seu oposto – uma força que empurra o objeto em direção ao solo [fonte: Nasa - em inglês].

Você acha que o coeficiente de arrasto de um carro de F-1 é superbaixo? Afinal, um carro superaerodinâmico deve ser muito veloz. Bem, não é assim num F-1. Os carros dessa categoria têm Cx por volta de 0,70.

Aerodinâmica
©iStockphoto.com/Tan Kian Khoon
Os carros de F-1 são aerodinamicamente projetados para gerar o máximo de downforce (sustentação negativa)

Por que um supercarro que supera 330 km/h não é lá muito aerodinâmico? Porque um F-1 é projetado para ter o máximo possível de downforce. Pelas altíssimas velocidades atingidas – e por seu baixíssimo peso (em inglês) – esses carros começam a ter sustentação e tendem a decolar, como um avião. Obviamente carros não devem voar, e se um carro perde o contato com o chão quando em alta velocidade pode haver um sério acidente. Por isso, a sustentação negativa deve ser ampliada - e a forma de fazer isso leva a um elevado Cx.

Os carros de F-1 conseguem sustentação negativa graças a aerofólios ou defletores montados na frente e na traseira. Os aerofólios criam diferenças de pressão que literalmente empurram o carro em direção ao solo – é a sustentação negativa. Isso aumenta a velocidade em curvas, mas tem que ser cuidadosamente balanceado para que o carro tenha velocidade suficiente nas retas.

Vários carros de rua têm acessórios aerodinâmicos que geram sustentação negativa. O Nissan GT-R, por exemplo, criticado por sua aparência, tem a carroceria toda projetada para permitir que o ar flua sobre o carro e chegue ao aerofólio traseiro ovalado, gerando um bocado de downforce. Na Ferrari 599 GTB Fiorano (em inglês) as colunas B (atrás dos bancos) vazadas canalizam o ar para a traseira, reduzindo o arrasto.

Mas e os defletores e outras peças aerodinâmicas em carros do dia a dia? São realmente aerodinâmicos? Em alguns casos, os dispositivos aumentam a estabilidade em alta velocidade. Por exemplo, o Audi TT inicialmente não tinha um defletor no capô traseiro, mas a Audi instalou um quando se descobriu que a carroceria arredondada criava muita sustentação, o que pode ter provocado acidentes.

Só que na maioria dos casos a colocação de um grande aerofólio na traseira de um carro comum não vai melhorar muito o desempenho nem a dirigibilidade – se é que vai melhorar alguma coisa. Em alguns casos, pode haver piora no comportamento do carro – que pode, por exemplo, ter dificuldade em fazer curvas, ou passar a sair de frente.

Aerodinâmica

A história do projeto aerodinâmico dos carros

Aerodinâmica
©iStockphoto.com/John W. DeFeo
Esses carros antigos são exemplos de como quase nada se conhecia sobre veículos aerodinâmicos no início do século 20
Os cientistas já tinham fazia muito tempo alguma noção do que era necessário para criar formas aerodinâmicas, mas demorou um pouco mais para que esses princípios fossem aplicados ao projeto de carros.

Os primeiros carros não tinham nada de aerodinâmicos. Dê uma olhada no Ford T (em inglês), com sua carroceria bem quadrada – na verdade, parecida com uma carroça sem cavalos. Muitos desses carros mais antigos não tinham que se preocupar com a aerodinâmica porque eles eram relativamente lentos. Mesmo assim, alguns carros de corrida do início do século 20 incorporavam alguma coisa em afilamento e dispositivos aerodinâmicos.

Em 1921 o inventor alemão Edmund Rumpler criou o Rumpler-Tropfenauto (carro gota d’água). Baseado na forma mais aerodinâmica da natureza, a gota d’água, ele tinha Cx de apenas 0,27, mas seu visual peculiar não atraiu o púbico, e apenas cerca de 100 foram produzidos. [fonte: Price - em inglês].

Do lado dos EUA, um dos maiores passos adiante surgiu na década de 1930, com o Chrysler Airflow. Inspirado em pássaros voando, o Airflow foi um dos primeiros carros projetados levando em consideração a aerodinâmica. Embora usasse técnicas de fabricação exclusivas e tivesse distribuição de peso quase 50/50 (igual distribuição de peso sobre as rodas dianteiras e traseiras, para melhor dirigibilidade), os consumidores da época da Grande Depressão (em inglês) não mostraram entusiasmo por seu visual ortodoxo, e o carro foi considerado um fracasso. Mas seu desenho afilado estava muito à frente de seu tempo.

Nos anos 50 e 60 alguns dos maiores avanços na aerodinâmica dos carros tinham vindo das corridas. No começo os engenheiros fizeram experiências com diferentes projetos, sabendo que formas alongadas podiam ser úteis para tornar os carros mais velozes - e mais estáveis em alta velocidade. Depois isso se transformou numa ciência, dedicada a produzir os carros de corrida mais aerodinâmicos. Aerofólios e defletores dianteiros e traseiros, “narizes” com formas que ajudam a “furar” o ar e kits aerodinâmicos se tornaram cada vez mais comuns, sempre com a intenção de fazer o ar fluir sobre o carro e criar sustentação negativa nas rodas dianteiras e traseiras. [fonte: Formula 1 Network - em inglês].

Empresas como Lotus, Citroën e Porsche desenvolveram carros muito aerodinâmicos para vender ao público, mas na maioria das vezes eram carros esporte de alto desempenho, e não modelos para o uso no dia a dia por motoristas comuns. Isso começou a mudar nos anos 1980 com o Audi 100, um sedã com um até então inédito Cx de 0,30. Atualmente quase todos os carros são projetados com alguma preocupação com a aerodinâmica.

segunda-feira, 2 de novembro de 2009

Contra o vento

        Utilizamos a aerodinâmica para obter contato com o solo, mas devemos lembrar que o objetivo principal nas corridas é correr com a maior velocidade possível.

        Embora as vezes parecemos ignorar isto, mas nos vivemos em meio a um fluido, o ar. Como se torna evidente, a água dificulta a movimentação de corpos dentro do mar, o mesmo ocorre devido  o ar, claro que em proporções muito menores, devido este ser menos denso que a água.

         O que fazer então para vencer a força do vento e cortar o ar, o princípio disto vem do modelamento, o desenho do corpo que se movimenta.

         Imaginemos corpos caindo da atmosfera, a física nos diz que estando sob a mesma aceleração da gravidade, os corpos cairam na mesma velocidade.

          Então, o que faz com que uma folha de papel amassada caia mais rápido que uma folha de papel aberta (lisa)? Justamente pelo fato do modelamento a folha lisa (aberta) tem uma área maior em contato com o ar, dificultando ainda mais a deslocação deste para cima da folha, criar uma maior força de atrito (força contrária ao vetor aceleração). Quando temos a folha amassada, além da menor área, diminuindo a quantidade de ar que deve ser deslocada, temos também um modelamento que facilita este deslocamento.



         A física nos diz que não importa o peso de um corpo, todos teram a mesma velocidade ao cair sendo atraídos pela mesma aceleração da gravidade. então, o fator preponderante na diferença de velocidades em quedas livres é o atrito com o ar.

        Assim, nos carros utilizamos formas que procuram dificultar o mínimo possível a passagem do ar da parte frontal a parte traseira do carro. Assim, chegamos ao modelamento de carros sempre pensando neste princípio.




        Para testar e calcular os resultados obtidos, usamos uma máquina conhecida como túnel do vento, a partir de um gás colorido em alta velocidade, passando pelo corpo ao qual testamos a aerodinâmica, podemos estudar como se dá a movimentação do ar, analisando a sua maior ou menor dificuldade.

        Observe no vídeo a seguir, a utlização do túnel de vento em um modelo de carro, percebe as linhas formadas pelo ao e o contorno do carro sendo desenhado pelo fluído.

                                

          Por isto que, nas corridas de motos, os pilotos sempre se posicionam o mais próximo a moto possível, evitando que o seu próprio corpo seja fonte de atrito com o ar.




Links relacionados: